Zero-overhead R and C/C++ integration with FastR

Lukas Stadler, Stépdan Sindela¥, Florian Angerer

Oracle Labs
The Problem The Solution
C and C++ are frequently used to improve performance of R applications and packages. FastR uses the Truffle framework and the
While this is usually not necessary when using FastR, because it can run R code at near-native Sulong engine to run native code, available as
performance, there is a large corpus of existing code that implements critical pieces of LLVM bitcode, inside the optimization scope of
functionality in native code. Like other alternative implementations of R, FastR needs to the polyglot Truffle environment.
simulate the R native API, which is a complex APl that exposes many implementation details. This allows the Graal compiler to perform its
This simulation usually incurs significant effort and performance overhead, and there is a advanced compiler optimizations for both
compilation and optimization barrier between languages. languages and across both languages.

C/C++/Fortran/...

T T

FastR is an alternative implementation of

the R language, running on top of a Java function(a, b, c) { double fun(double x, double vy,
Virtual Machine. It is designed to be a foo(a) double z) {

drop-in replacement that executes exist- fun(b, 1, c) return sqrt(x) + pow(y, z);
ing R code at unparalleled peak perfor- I s

mance. It also provides access to the
polyglot Truffle ecosystem, so that it can
interact efficiently with other languages
such as JavaScript and Ruby.

Sulong is an interpreter for LLVM IR code
that can execute C/C++, Fortran, and oth-

er LLVM-supported languages on a Java g “ ’ ' °
Virtual Machine. FastR can use Sulong to
gxeFute code written in these Ianguages * optimize ASTs
within the same ecosystem, compile them

using the same compiler, and optimize (during execution)
them as a single unit for maximum per-
formance.

parse into ASTs

v v
° o

S 9 o 2

v
v

Truffle is a framework for implementing
languages as simple interpreters. It pro-

vides the basic foundation for building

abstract-syntax-tree (AST) interpreters inlini ng
that perform self-optimization at runtime. x ‘
The included TruffleDSL provides a conve-
nient way to express such optimizations.

Truffle is developed and maintained by
Oracle Labs and the Institute for System
Software of the Johannes Kepler

University Linz. ‘
Graal

Graal is a dynamic compiler that trans-
forms Java bytecode into executable
machine code. It is written in Java, and
integrates into Java Virtual Machines like
the HotSpot JVM. It has a focus on high
peak performance, maintainability and
extensibility.

+ compile to native code

Together with the Graal compiler, Truffle
is capable of just-in-time compiling
programs running on top of it to

native code for efficient execution. ORAC'_€®




