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Abstract 
We have developed the R2GPU suite of R packages (R2GPUbase, R2GPUmath, R2GPUprob) 

to provide a very simple R interface to general purpose computing on NVIDIA graphical 

processing units (GPUs).  The R2GPU packages define the infrastructure to initiate 

interactions between an R session and a GPU device, transmit data between an R session 

and a GPU device, and transmit instructions from R to a GPU device.  This infrastructure 

provides two distinct practical advantages to the R programmer:  

 

(1) most functions for the GPU are syntactically identical to standard R, thereby reducing the 

burden of learning a new set of R commands; and  

 

(2) the results of a GPU calculation may remain on the GPU for further processing by the 

GPU, thereby greatly reducing the overhead of using the GPU to maximize the speed-up 

for real applications.   

 

In this way, the R2GPU packages provide R programmers the ability to easily expand existing 

packages to perform computationally intensive tasks on the GPU.  

Objectives 

1. Use standard R syntax for GPU computing. 

2. Maximize speed-up for real applications.      

Methods 
1. Define an R object class CP that points from the CPU to data on 

the GPU.  

2. Define toGPU(x)as a function that transmits the data in x from 

the CPU to the GPU and returns a CP object. 

3. Use a standard R interface to define methods for CP objects. 

4. Define toGPU(x)as a function that operates on the CP object 

class to bring data back to the CPU from the GPU. 

Conclusions and Discussion 

1. The R2GPU packages empower R programmers to 

achieve massive speed-ups (10-100 fold) on a GPU 

while leaving most of their CPU code unchanged. 

2. GPUs are a much more affordable parallel computing 

resource than traditional clusters.  A  K40 GPU costs 

roughly $3,500. 

3. Future work will make the GPU available for more 

standard R functions. 

Technical Details 
Hardware : 

Dell cluster with two nodes. 

Each node  has 12 CPU cores (2.4 GHz Intel ® Xeon). 

Eight NVIDIA K40m Tesla GPUs. 

Each K40m has 11.25 GB Global Memory. 

 

Software: 

R Linux Version 3.1.2 

C++ 

CUDA v6.5 runtime APIs, computer capabilities of 3.5. 

Background 

We have entered a big data era in science, 

business, and government.  Big data are 

common in many applications .  Computing 

time for data processing and analysis can 

be extensive.  For example, biomedical 

genomics researchers often collect millions 

of data values for each of many patients.  

Computational analysis of this data can 

take hours, days, or weeks. 

 

Graphical processing units (GPUs) are an 

inexpensive platform for parallel 

computing.  In principle, GPUs could be 

used for many big data applications.  

However, programming for GPUs is very 

technical and difficult.  A simple interface to 

GPU computing in a popular language 

such as R would make GPU computing 

power more readily available to more 

software developers. 

Illustrative Example 
# Rank and z-transform each row or column of a matrix 

library(R2GPUmath) 

prep.mtx=function(X,     # a numeric matrix 

                  dm,    # what to operate on (1=rows, 2=colums) 

                  gpu=F) # indicates whether to use a GPU 

   

{                           # begin function 

  if (dm==2) X=t(X)           # transpose to operate on columns 

  n=ncol(X)                   # get number of columns 

   

  r=NULL                      # initialize r 

  if (!gpu) r=apply(X,1,rank) # rank each row on CPU 

  else                        # rank each row on GPU 

  { 

    x=toGPU(X)                  # move data to GPU 

    x=t(x)                      # transpose for GPU rank routine 

    r=rank(x)                   # use GPU rank routine 

  } 

  r=t(r)                      # transpose the matrix of ranks  

  m=rowMeans(r)               # find mean of ranks for each row 

  s=rowSums((r-m)^2)/(n-1)    # find MSE of ranks for each row 

  s=sqrt(s)                   # find RMSE of ranks for each row  

  z=(r-m)/s                   # z-transform ranks for each row 

  if (dm==2) z=t(z)           # transpose back if needed 

  return(z)                   # return result (to GPU if on GPU) 

}                           # end function 

 

m=100000; n=1000; Y=matrix(rnorm(m*n),m,n);         # example matrix 

cpu.prep=prep.mtx(Y,1,F); gpu.prep=prep.mtx(Y,1,T); # run both ways 

Figure 1.  Computing time in seconds for the illustrative example shown above.  The GPU 

achieved a 10.3 fold speed-up. 

Example Application 
We used the R2GPU packages to develop a GPU implementation of the 

projection onto the most interesting statistical evidence (PROMISE; 

Pounds et al 2009; PMID 9528086) statistical method.  PROMISE is an 

integrated data analysis method that identifies genes that show the most 

significant pattern of biologically meaningful associations with multiple 

pharmacological and clinical endpoint variables.  PROMISE is a 

computationally intense method based on permutation testing.   We 

developed an implementation that could use the CPU or GPU. The GPU 

was 125 times faster than the CPU.  The vast majority of the code lines 

were identical for the GPU and CPU implementations (Figure 3).   

Figure 2.  Computing time in seconds for a PROMISE analysis.  The total completion 

time for the CPU is 377.18 seconds while that for the GPU is only 3.02 seconds (a 125-

fold speed-up).  The computing time for the CPU is 371.72 seconds while that for the 

GPU is only 0.01 seconds (a 33,792 fold speed-up).   

Figure 3.  Percentage of code that is identical to the CPU implementation (light blue), 

used for benchmark timing (gold) and unique to the GPU implementation (gray).  The 

left panel shows the overall percentages; the right panel excludes the code for timing. 
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