
F
in

d
in

g
 c

u
re

s.
 S

a
vi

n
g
 c

h
il

d
re

n
.

F
in

d
in

g
 c

u
re

s.
 S

a
vi

n
g
 c

h
il

d
re

n
.

R2GPU: A Very Simple R Interface for General Purpose Computing on Nvidia GPUs
Julio Olaya, Xueyuan Cao, Stan Pounds

Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, USA

Abstract
We have developed the R2GPU suite of R packages (R2GPUbase, R2GPUmath, R2GPUprob)

to provide a very simple R interface to general purpose computing on NVIDIA graphical

processing units (GPUs). The R2GPU packages define the infrastructure to initiate

interactions between an R session and a GPU device, transmit data between an R session

and a GPU device, and transmit instructions from R to a GPU device. This infrastructure

provides two distinct practical advantages to the R programmer:

(1) most functions for the GPU are syntactically identical to standard R, thereby reducing the

burden of learning a new set of R commands; and

(2) the results of a GPU calculation may remain on the GPU for further processing by the

GPU, thereby greatly reducing the overhead of using the GPU to maximize the speed-up

for real applications.

In this way, the R2GPU packages provide R programmers the ability to easily expand existing

packages to perform computationally intensive tasks on the GPU.

Objectives

1. Use standard R syntax for GPU computing.

2. Maximize speed-up for real applications.

Methods
1. Define an R object class CP that points from the CPU to data on

the GPU.

2. Define toGPU(x)as a function that transmits the data in x from

the CPU to the GPU and returns a CP object.

3. Use a standard R interface to define methods for CP objects.

4. Define toGPU(x)as a function that operates on the CP object

class to bring data back to the CPU from the GPU.

Conclusions and Discussion

1. The R2GPU packages empower R programmers to

achieve massive speed-ups (10-100 fold) on a GPU

while leaving most of their CPU code unchanged.

2. GPUs are a much more affordable parallel computing

resource than traditional clusters. A K40 GPU costs

roughly $3,500.

3. Future work will make the GPU available for more

standard R functions.

Technical Details
Hardware :

Dell cluster with two nodes.

Each node has 12 CPU cores (2.4 GHz Intel ® Xeon).

Eight NVIDIA K40m Tesla GPUs.

Each K40m has 11.25 GB Global Memory.

Software:

R Linux Version 3.1.2

C++

CUDA v6.5 runtime APIs, computer capabilities of 3.5.

Background

We have entered a big data era in science,

business, and government. Big data are

common in many applications . Computing

time for data processing and analysis can

be extensive. For example, biomedical

genomics researchers often collect millions

of data values for each of many patients.

Computational analysis of this data can

take hours, days, or weeks.

Graphical processing units (GPUs) are an

inexpensive platform for parallel

computing. In principle, GPUs could be

used for many big data applications.

However, programming for GPUs is very

technical and difficult. A simple interface to

GPU computing in a popular language

such as R would make GPU computing

power more readily available to more

software developers.

Illustrative Example
Rank and z-transform each row or column of a matrix

library(R2GPUmath)

prep.mtx=function(X, # a numeric matrix

 dm, # what to operate on (1=rows, 2=colums)

 gpu=F) # indicates whether to use a GPU

{ # begin function

 if (dm==2) X=t(X) # transpose to operate on columns

 n=ncol(X) # get number of columns

 r=NULL # initialize r

 if (!gpu) r=apply(X,1,rank) # rank each row on CPU

 else # rank each row on GPU

 {

 x=toGPU(X) # move data to GPU

 x=t(x) # transpose for GPU rank routine

 r=rank(x) # use GPU rank routine

 }

 r=t(r) # transpose the matrix of ranks

 m=rowMeans(r) # find mean of ranks for each row

 s=rowSums((r-m)^2)/(n-1) # find MSE of ranks for each row

 s=sqrt(s) # find RMSE of ranks for each row

 z=(r-m)/s # z-transform ranks for each row

 if (dm==2) z=t(z) # transpose back if needed

 return(z) # return result (to GPU if on GPU)

} # end function

m=100000; n=1000; Y=matrix(rnorm(m*n),m,n); # example matrix

cpu.prep=prep.mtx(Y,1,F); gpu.prep=prep.mtx(Y,1,T); # run both ways

Figure 1. Computing time in seconds for the illustrative example shown above. The GPU

achieved a 10.3 fold speed-up.

Example Application
We used the R2GPU packages to develop a GPU implementation of the

projection onto the most interesting statistical evidence (PROMISE;

Pounds et al 2009; PMID 9528086) statistical method. PROMISE is an

integrated data analysis method that identifies genes that show the most

significant pattern of biologically meaningful associations with multiple

pharmacological and clinical endpoint variables. PROMISE is a

computationally intense method based on permutation testing. We

developed an implementation that could use the CPU or GPU. The GPU

was 125 times faster than the CPU. The vast majority of the code lines

were identical for the GPU and CPU implementations (Figure 3).

Figure 2. Computing time in seconds for a PROMISE analysis. The total completion

time for the CPU is 377.18 seconds while that for the GPU is only 3.02 seconds (a 125-

fold speed-up). The computing time for the CPU is 371.72 seconds while that for the

GPU is only 0.01 seconds (a 33,792 fold speed-up).

Figure 3. Percentage of code that is identical to the CPU implementation (light blue),

used for benchmark timing (gold) and unique to the GPU implementation (gray). The

left panel shows the overall percentages; the right panel excludes the code for timing.

Acknowledgements: St. Jude donors, ALSAC, the PBTC Foundation, and Dr. James Boyett

