SmartCat .

y DATA — KNOWLEDGE — POWER

IMPROVED R IMPLEMENTATION OF COLLABORATIVE

- FILTERING FOR RECOMMENDER SYSTEMS

In this work we present an R implementation of memory;based éollabor.ative filt.eriné which is:

& SIGNIFICANTLY FASTER (EXECUTION TIME IS DECREASED BY A AN ORDER OF MAGNITUDE)

& APPLICABLE TO LARGE DATASETS ON WHICH CLASSIC IMPLEMENTATION MIGHT RUN OUT OF MEMORY.

§2 WHAT ARE OUR GOALS?

Memory-based collaborative filtering (CF) is a common technique that make recommendations by using
Information about similarities between users or items:

& USER-BASED CF: To predict how user U will rate item I, we take information about how similar
users have rated that item.

& |TEM-BASED CF: To predict how user U will rate item |, we take information about how he has
rated similar items.

Here are the exact formulas for user-based CF. In order to calculate prediction about how user u will rate
item i(r, ;J, we aggregate over ratings that users similar to u have given to item i. The more similar a user is,
the more influence his rating has to the overall prediction.

1
ryi=w Z sim(u,u’)ry; W= —Z ; ;
U'ES ues | sim(u,u)|

Predictions are usually not calculated in a loop, but rather using matrix multiplication since it is a much faster
operation. Here is an example for predicting how user U2 will rate item I3 (blue cells):

Ut U2 us .. Ut u2 us .. U1 U2 us ..

Z 51m(u2,u’)r,“,/,,-3
SHEEEEEEE u’€s
EEEEEEEN
HEEEEEEN
EEEEEEEN
HEEEEEEN

ITEM-USER RATINGS MATRIX

PREDICTED RATINGS (SUM PART)

USER-USER SIMILARITY MATRIX

By multiplying two matrices we get instant results for all predictions (not only for U2-13). Obviously, in case
there are a lot of users or items, matrices might become large. Then, the calculation of all predictions
require a lot of memory and processing time. Therefore, the main issues of memory-based CF are related to:
&3 EXECUTION TIME

& SCALABILITY

We address these issues using new approach and compare it to commonly used R package 'recommenderlab’.

§4 EXECUTION TIME IMPROVEMENT

The main steps used in the implementation of user-based CF are as follows (the same approach applies for
item-based CF):

& Take a ratings matrix and optionally normalize ratings.
& Calculate similarities between users.
& Optionally keep k most similar users (k highest values per column] in the user-user similarity matrix.

& Calculate predictions and denormalize them in case normalization was performed in the first step

SPARSENESS » OPTIMIZATION

The characteristic of rating matrices is that they are very sparse (users typically rate only few items, if any).
For calculating similarities the key optimization was achieved by using functions optimized for sparse data.
Here is an example of how to efficiently calculate correlation using CROSSPROD (R function optimized for
multiplication of sparse vectors/matrices). The example shows users a and b (items rated by both users are
marked as |_,. Final formula can be generalized to matirces.

11 12 13 14 15 16 17 18
al : N : OB s
" 12

13 14 15 16 17 18
Al - 1 : BEN

_ _ AL A
Z,‘g/ab (rai - ta)*(rei -Tv) Z’E/ab (Fai)*(bi)

Vi -7 N e -7 N S 60\ Sier ()

cor(a,b) =

crossprod(c?,l;)

\/ crossprod(c?z,b!=null) * \/ crossprod(a! =null,lA92)

Another optimization we made was regarding filtering on k nearest neighbours. We grouped all the values
from the similarity matrix by column and applied a function that finds the k-th highest value per column.
This was implemented using the R ‘data.table’ package.

cor(a,b) =

EVALUATION

The comparison of our implementation vs. ‘recommenderlab’ was performed using the following setup:
& Center normalization and cosine measure to calculate similarities
& 10-fold cross validation

& The evaluation was performed on a single machine with 16 GB RAM

USER-BASED CF: ITEM-BASED CF:

Our implementation ~ Recommenderlab Our implementation ~ Recommenderlab

exec time rmse exec time

k=100 (ORI 6.6s 0.940 302.7s

exec time rmse

SXl 0.931 5.6s 0.999 145.43s "l 0925 7.75 0.927 241.6s
SN (0.932 6.4s 0.985 142.1s SN 0.940 8.7s 1.593 185.4s

COMPARISON ON 100K MOVIELENS DATASET (~ 100, 000 RATINGS)

rmse exec time rmse

USER-BASED CF: ITEM-BASED CF:

Our implementation =~ Recommenderlab Our implementation Recommenderlab

20-50X FASTER

rmse exec time rmse exec time rmse exec time rmse exec time

AN 0.902 116.2s 0.964 6321.1s (CHVU 0.894 0.894 3301.5s
CX{0pm 0.891 132.7s 0.971 6408.4s 'ExJ 0.886 0.886 3300.3s
k=ALL [ORAtK 311.2s 1.006 7403.5s k=ALL [JNOXIV 165.4s 1.596 3427.0s

COMPARISON ON 1M MOVIELENS DATASET (~ 1,000,000 RATINGS)

&2 BUILD A RECOMMENDER ON LARGE DATASETS

All algorithms were ran on a single machine with 16 GB RAM, and evaluated using 10-fold cross validation.
In such a setup, recommenderlab’ implementation can not be used on MovieLens 10M dataset (at least for
user-based CF, since it runs out of memory when similarities matrix needs to be calculated).

In our implementation, we tried to solve the problem of large matrices by calculating predictions
block-by-block. The picture below shows the procedure for user-based CF. In each step we take N items
from ratings matrix, M users from similarities matrix, and the product give as a block of predictions for
them.

ut uz U3 .. Ul uz2 U3 .. Ut uz U3 ..

USER-USER SIMILARITY MATRIX

ITEM-USER RATINGS MATRIX

PREDICTED RATINGS (SUM PART)

ITEM-BASED CF: USER-BASED CF:

block size -
columns (items)

block size -
rows (users)

k=100 0.851 178.43m 15000 500
k=1000 pEIRKY 191.86m 15000 500

block size - rmse exec time

columns (items)

block size -
rows (users)

k=100 0.839 10.53m 20 000 6 000
k=1000 puREXN 23.33m 20 000 6 000

RESULTS ON MOVIELENS 10M DATASET (~10,000,000 RATINGS)

rmse exec time

With this current implementation, when we need to find recommendations in real-time for one or several
users, the calculation of similarities and predictions will be much faster since we will operate on a small
number of users. The algorithm can be optimized further, by storing the similarity matrix as a model,
rather than calculating it on-fly. An obvious advantage of this algorithm is that it can be parallelized, since
we calculate predictions in each block independently.

&2 FINAL NOTE

In this presentation we showed how you can optimize existing
iImplementations of memory-based collaborative filtering,

in order to achieve better performance and scalability.

In the near future we plan to work on this project further and

extend it with new algorithms. The code is freely available on .
https://github.com/smartcat-labs/collaboratory. - 1

Feel free to comment and contribute!

smartcat.io

www.SmartCat.io

