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INTRODUCTION
• when modelling socio-economic data one is

often interested in cross-sectional diversity
and its changes over time,

• the simplest approach uses a single disper-
sion measure, but it tells nothing about the
diversity within the distribution,

• one can also compare histograms or unidi-
mensional kernel density estimates, which
still tells nothing about the mobility within
the distribution

• internal mobility can be caught by a tran-
sition matrix or conditional kernel density
estimate (based on which can also formu-
late ergodic distribution).

OBJECTIVES
• show different approaches of modelling

distribution dynamics applied in R,

• particular focus on transition matrices and
conditional kernel density estimates,

• R based application of recently developed
methodology allowing to summarize a two-
dimensional conditional kernel density sur-
face with the (univariate) ergodic distribu-
tion – see Gerolimetto and Magrini (2017),

• present readable and attractive ways of vi-
sualization of estimation results,

• practical examples on simulated and real
spatial data.

METHODS & R PACKAGES
Transition matrix (borrowed from Markov chains – see Quah, 1996):

• initial distribution is divided into several intervals (groups),

• matrix M: dt = M × dt−1 shows probabilities of mobility between groups,

Conditional kernel density (A = adaptive): fA(yT |y0) = fA(yT ,y0)
fA
y0

(y0)
, where

• denominator estimated as: f̂A
y0
(y0) =

1
n

∑n
i=1

1
hy0

wi
K
(

y0−y0i

hy0
wi

)
• numerator replaced with: f̂A(yT , y0) =

1
n

∑n
i=1

1
hyT

hy0wi
K
(

yT−yTi

hyT
wi

)
K
(

y0−y0i

hy0wi

)
where hy0

and hyT
are optimal bandwidths for initial and final distribution respectively and wi are

observation weights from the two step adaptive estimation procedure.
Calculation of ergodic density based on discretization of conditional kernel density – see Gerolimetto
and Magrini (2017).

R packages used in the analysis: markovchain, reshape2, ggplot2, gridExtra

Development of own package for modelling regional convergence and within distribution mobility – in
progress.

RESULTS
REAL DATA ON RELATIVE INCOME DISTRIBUTION FOR POLISH NUTS5/LAU2 REGIONS
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ERGODIC KERNEL DISTRIBUTIONS
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CONCLUSIONS
• distribution of income on a local level is most persistent in highest income groups,

• ergodic pattern for real data is between the simulated convergence and persistence,

• results suggest convergence within several grous (clubs) of regions.

FURTHER STEPS
• development of own package for modelling

regional convergence and within distribu-
tion mobility,

• using Rcpp for time efficient calculation of
conditional kernel densities on larger sam-
ples,
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