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Introduction

The ‘eesim’ package provides functions to
create simulated time series of

Assessing model performance Power analysis

Simulation studies can be used to estimate
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simulated time series. T ,
3. Fitting models to simulated data; and
4. Evaluating model performance on simulated data. Here is an example of conducting a power
analysis to study the relationship between
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exposures (Bobb 2015). G DO s D T T A S HEF S adequately-powered analysis. The plot below is
returned from the power_calc” function in
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(1) Methods for simulating are The eesim function generates multiple similar simulated /
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simulate environmental health time 8
Ser‘ies, Variable Description 0.25
beta_hat Mean estimate: The mean of the estimated log relative rate over all simulations.
rr_hat Mean estimated relative rate: The mean of the estimated relative rate over all simulations. 0.00
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Variance across estimates: Variance of the point estimates (estimated log relative risk)
over all simulations.
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outcomes, fitting models, and evaluating

. o Relative risk
performance using the built-in features of
‘eesim , such as the trends shown above.
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