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Introduction

Amyloids are proteins associated with the number of clinical disorders (e.g.,
Alzheimer’s, Creutzfeldt-Jakob’s and Huntington’s diseases). Despite their
diversity, all amyloid proteins can undergo aggregation initiated by 6- to 15-residue
segments called hot spots. To find the patterns defining the hot-spots, we trained
predictors of amyloidogenicity based on random forests using short subsequences
(n-grams) extracted from amyloidogenic and non-amyloidogenic peptides collected
in the AmyLoad database.
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Reduction of the amino 

acid alphabet in hexamers.

Extraction of n-grams. 

From each hexamer, we 

extracted continuous and 

discontinous n-grams with 

the length n = 1, 2 or 3.

Clusterization of amino acids 

into an encoding using a 

combination of various 

physicochemical properties 

(PP). 
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Training of a random 

forest classifier using the 
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previous step.

Results of cross-validation

The amyloidogenicity of a given peptide may not depend on the exact sequence of
amino acids but on its more general properties. Henceforth, we created 524,284
amino acid reduced alphabets (from three to six letters) based on physicochemical
properties relevant to amyloidogenicity.
Distribution of mean AUC values of classifiers with various encodings for every
possible combination of training and testing data set including different lengths of
sequences.
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The gray circles correspond to the encodings with the AUC outside the 0.95 confidence interval.

The predictor based on the best-performing encoding reached the highest AUC
(0.8667) in classification of the shortest sequences (with the length of 6 residues).

Classifiers based on the full (i.e., unreduced) amino acid alphabet never predicted
amyloidogenicity better than the best classifier based on the reduced alphabet.

The standard encodings found in the literature performed worse than other
analyzed encodings in most categories.
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The frequency of important n-grams used by the best-performing classifier
in amyloid and non-amyloid sequences. The elements of n-grams are
amino acids encoded using the best-performing reduced amino acid
alphabet. X represents any amino acid. Dots and triangles denote n-grams
occurring in motifs found in respectively amyloidogenic and
non-amyloidogenic sequences (Paz and Serrano, 2004).

Benchmark results

Classifier AUC MCC Sens. Spec.
AmyloGram 0.8972 0.6307 0.8658 0.7889

PASTA (Walsh et al., 2014) 0.8550 0.4291 0.3826 0.9519
FoldAmyloid (Garbuzynskiy et al., 2010) 0.7351 0.4526 0.7517 0.7185

APPNN (Faḿılia et al., 2015) 0.8343 0.5823 0.8859 0.7222

The predictor based on the best-performing alphabet, called AmyloGram,
was benchmarked against the most popular tools for the detection of
amyloid peptides using an external data set pep424.

Experimental validation

Using AmyloGram we analyzed all peptides from AmyLoad database.
Eight peptides, described in the database as non-amyloids and assesed by
AmyloGram with the highest probability of amyloidogenicity, were
validated experimentally using Fourier transform infrared spectroscopy.
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Seven out of eight peptides had amyloidogenic properties. In addition,
three of them were annotated as amyloids by other research groups.

Summary and funding

Thanks to the reduction of the amino acid alphabet and description of
peptides by short sub-sequences (n-grams), we were able to create the
efficient predictor of amyloidogenic sequences called AmyloGram.

Our software is avaible as a web-server:
www.smorfland.uni.wroc.pl/shiny/AmyloGram/ and R package:
https://cran.r-project.org/package=AmyloGram.

Find us online: https://github.com/michbur/USER2017.
This research was partially funded by the KNOW Consortium and National Science
Center (2015/17/N/NZ2/01845).
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